PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Noise-induced phase transition in soft Ising spins with a fluctuating interaction
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We investigate noise-induced phase transitions in soft Ising spins, which have continuous values, with a
fluctuating interaction within the framework of the mean-field scheme. The fluctuating interaction provides an
effective ferromagnetic coupling, leading to a ferromagnetic order. The interplay of the fluctuating interaction
and an additive noise leads to a reentrant transition, triple transitions, and a softening of the order parameter,
presenting a weak order in the ordered phase. In the limit of Ising spins the fluctuating interaction renormalizes
the mean field, reducing the critical intensity of the additive ndiS&063-651X97)10709-1

PACS numbg(s): 05.50+q, 05.40+j, 05.70.Fh, 05.70.Jk

A noise-induced nonequilibrium phase transition in a dy-ing a ferromagnetic coupling which depends on the differ-
namical system with multiplicative noise has been the topience of two soft Ising spins. In Eql), &;(t) is a Gaussian
of much recent investigatidri—11]. While an additive noise white noise characterized by
in equilibrium provides a disordering effect, restoring a bro-

ken symmetry, the multiplicative noise coupled to the state (&(1))=0,
of the system induces an ordered symmetry-breaking state.
The interplay of the additive and multiplicative noises pro- (&G(DEM))=g;o(t—t"),

duces a reentrant transition, showing the ordered symmetry-

breaking state only for intermediate intensities of the multi-where( ) means an ensemble average agit)’s. s mea-
plicative noise[4,11]. Most studies of the noise-induced Sures the intensity of the additive noi§€t) and is incorpo-
phase transition have usually considered the fluctuating pdated by the temperatufie=02/2. Here we consider only the
tential [4,6,8), explaining its mechanism by the short-time System with non-negativé.

behavior of a single elemef@]. Recently, the effect of fluc- Equation(1) is invariant under a symmetric operation
tuating interaction has been studied showing the symmetry-

breaking transition[7] and noise-enhanced multistability Xi—=X;, and &(t)——&(1). @
[10].

In this paper we investigate noise-induced phase trans{l! Wo- or higher-dimensional systems the inversion symme-
try (2) is broken for smallo, producing a ferromagnetic

tions in soft Ising spins within the framework of the mean- .
field scheme. We introduce a fluctuating interaction into the(FM) state characterized by a nonzero order parameser

system, showing that fluctuating interaction produces an efc_ieflned by
fective ferromagnetic coupling and thus induces a ferromag-
netic state even in the absence of ferromagnetic coupling. m=
The interplay of the fluctuating interaction and the additive
noise also leads to the reentrant transition. In the presence of . o .
ferromagnetic coupling the system shows a softening of thé'S @a increases, the equilibrium phase transition occurs at a
order parameter, leading to triple transitions. The softening'itical valueo . recovering the inversion symmet(g) and
implies the existence of a weak order in the ordered phase. lAroducing a paramagnetiPM) state withm=0. This is the
the limit of Ising spins the fluctuating interaction renormal- Well-known Ising-type phase transition. _ _
izes the mean field, reducing the critical intensity of the ad- 10 investigate effect of the fluctuating interaction, we in-
ditive noise. troduce fluctuation into the ferromagnetic couplihgs

A system of N coupled soft Ising spins under study is
described by the equation of motiph2]

Z| -

Ei (x;)-

J=J+ouni(t),

where 7;(t) is a Gaussian white noise independentgt),
and characterized by

(mi(0))=(m(t)§(t"))=0,

where soft Ising sping;, i=1, 2, ...,N are real variables; (mi(t)p;(t"))y=38;8(t—t"),
when p—o, they asymptotically take on the valuesl
leading to the Ising spins. The sum in @) runs overz; with an ensemble averade) over &'s and #;'s. o mea-
soft Ising spins coupled with thigh soft Ising spin, describ- sures the intensity of the fluctuating interaction providing a
multiplicative noise. The fluctuating interaction does not
break the symmetryEq. (2)] of the system. In the frame-
*Electronic address: skim@logos.etri.re.kr work of the mean-field scheme, we replace the coupling term

Xi

d J
Ew(l—x?)xi—z—i; (Xi—Xj)+aa&i(t), (1)
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by the mean fieldm, obtaining the stochastic differential 1000
equation as a closed form &f=x,

100}
dx

Gi=HAOX [+ oun(D](x—m) +opé(). () ol

This approach has been applied successfully in a number of & 1l
other stochastic problenid,13]
The macroscopic behavior of E(B) can be described by 0.1}

the probability distributiorP(x,t) of x at timet, whose evo-
lution is governed by the Fokker-Planck equatjdd] 0.01L

aP AP af,, 5 0.001

ST o HAXX=| 3+ 7| (x=m) [ P(x.t)

Gy
aatom(x—m? #P N .
+—F (4) FIG. 1. Plots of phase diagram in tle-o), plane for various

2 .
2 Ix values ofJ: solid line forJ=0, long dashed line fod=0.6, short
dashed line fod=2, and dotted line fod=10. PM and FM rep-

In the steady state, E@4) gives the stationary probability resent paramagnetic and ferromagnetic phases, respectivend

distribution oy are in units ofu’?, andJ is in units of .
P ! u A
x)== exgd —U(x)], -
(0= exd ~U(x)] Us= 1+3_;)tan ) _MX)
OAOMm Owm oA
whereZ= [ _exd —U(X)]dx, with o2 el N 4
+2l1+ —p—J— —2 2t X
oM 2 |os+ oyx?

U(x)=2uU +i+1| A+ oy(x—m)?], (5)
(x)=2pU ,(x) o2 2 Nfoa+ oy (Xx—m)<],

To obtain phase boundaries, we solve 8).numerically for

m / Ui . variqus values of. N ' .
U, (x)=— 1+3— mZ)tanl —(x—m)} Figure 1 shows the critical lines which separate the FM
TATM oM A and PM phases in the,-oy plane for various values af.
1 02 In the absence of the ferromagnetic couplidg-Q) the sys-
- | 1-3m?+ —7 |n[0A+Urv1(X m)?] tem shows double transitions ag, increases for smalk, :
ZUM When o5,=0, the system is in the FM phase for all finite
1 o, implying that the fluctuating interaction induces the fer-
+ —(X—m)(x+5m). (6) romagnetic order even in the absence of the ferromagnetic
207 coupling. For <o pa<oa.=1.04, the system shows a reen-
trant transition, leading to two transition pointg,.; and
Herem is given by the self-consistent equation omcz at which two transitions, PM:FM— PM, occur, re-
spectively. Asa, increasesoy, increases andry,., de-
° creasesoy ¢, and oy Meet atop.. FOr 04> o the sys-
m=f(m)= f_ xP(x)dx. (7)  tem is in the PM state regardless @f, , implying that the

disordering effect of the additive noise dominates the order-
ing effect of the fluctuating interaction entirely.
In the presence of the ferromagnetic couplidg-Q), the
system without fluctuating interaction shows an equilibrium
hase transition at a critical point,.(oy=0). The phase
ansition persists ag), turns on, and increases up to some
value of oy, opmeo- WhenJ=0.6, op(opm=0) andoy e
1 are given by 0.78 and 0.53, respectively: &g increases
N _ _ over oo, Tac(oy) increases, and has a maximum value
f xUs(xjexid ~Uo(x)Jdx=1, ® 1.04 atoy.=15.1. Asoy, increases furtherga (o) de-
creases approaching zero @g goes to infinity. Thus, for
whereZy=[*_exf —Uy(X)]dx, with 04<0.78, there is a single transition, FMPM, asoy in-
creases. For 0.880,<1.04 the reentrant transition occurs,
2 leading to the FM phase only in the intermediate values of
In(o2+ o2 x?) + = oy - For o,>1.04 there is no phase transition showing the
Om PM phase for all values afy, .

U(x) plays the role of an effective potential in the system.
We setu =1, representingra, o3, andJ in units of x.

According to Ref[4] the critical points at which the tran-
sition between the FM and PM states occurs are given by th
roots off’(0)=1, leading to

13, a
O'fﬂ o-f\l,l 2

Uo(x)=—
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FIG. 2. Plots of the order parameter as a function ofo, for
various values ofl at 0, =0.6: solid line forJ=0, long dashed line
for J=0.3, short dashed line far=0.31, dotted line fod=0.5, and
dash-dotted line fod=10. o, and oy, are in units ofw*?, andJ is
in units of w.

FIG. 3. Plots of the order parameter as a function ofsy, for
J=2 at various values af : solid line fora,=1, long dashed line
for 04=0.9, short dashed line for,=0.7, and dotted line for
oa=0.4.0, and oy, are in units ofu'’?, andJ is in units of u.

When J=2, the behavior ofos. (o)) is different with : ) .
that for J=0.6: oa(oyy=0) and oy, are given by 1.27 maximum valuem, at ovm; and aso), increases over
and 0.22, respectively. Asoy increases overoyg, Tmm. M decreases va_1n|sh|ng afc. The (_jepth of the c_il_p
oacloy) decreases, and has a minimum value 0.94 af'min decrease_s asp Increases .a.md vanishes at a critical
Tye1=4.9. AS oy, INCIEASe OVelry .1, o acoy) iNCreases point oA Ieadlng_ to tnplg transitions. Whea,=1, there
and has a maximum value 1.05 @{;c;=13.0. Asay in- &€ Tree transition pointsry e, =2.5, ouc;=8.5, and
creases furthekrpo(oy) decreases, approaching zeroogs Tmea=19.5, at. which the transitions FMPM—FM—PM
goes to infinity. Thus foir,<<0.94 or 1.05< 0 ,<1.27 there oceur, respeg:tlvely. .
is a single transition, FM:PM, as o) increases. In the limit O.f M= U(x) given b_y Eq.(5) has .tWO
For 0.94< 5, <1.05, the triple transitions, peaks atx==*, |mply|ng thatx is restrl_cted tox 1. Since
FM—PM—FM—PM, occur asr), increases. Fogrp>1.27 UM(.1)¢UN(_1)’ n ordgr to remove dlvergence we renor-
there is no phase transition presenting the PM state for alpallzeuﬂ(x) by subtracting=(x), characterized by
onm - WhenJ is large, a single transition FiMPM occurs as U.(—=1)—U.(1)
oy increases for alloa<oa., as shown in Fig. 1 with F(x)=—% s
J=10. 32

Figure 2 shows the order parametar solution of the U,(—1)+U,(1)
self-consistent equatiof¥), as a function ofr), for various + £ £
values of J at o,=0.6. When J=0, m=0 for 2
ou<omc1=0.85; and aso), increases ovewry;, M in- i .
creases continuously, leading to the second-order phase traf€dr x=*1. Since F(£1)=U,(x1) and F'(*+1)
siton PM—FM. At oy =0y,=11.5 m has a maximum =F"(x1)=0, it does not |anuen_cd=J_(x) up to the _second
value 0.66, implying that the ordering effect of the fluctuat-Order ofx=1 except for renormalization dd(x). Using the
ing interaction is maximized. A, increases furthenn  Steepest descent method in the limiyof- oo, U(x) reduces
decreases, which means that the interplay of the additive arl@
multiplicative noises reduces the ordering effect of the fluc-
tuating interaction. Atry, = o 2=47.9,m vanishes, leading
to the reentrant transition FMPM. While o)., decreases
asJ increasesg).» does not change for small as shown
in Fig. 2. At some value of, J.=0.305,0.; vanishes, and with an Ising spinse{—1,1}.
aboveJ, the system withr, =0 is in the FM phase. When Neglecting a constant term, we transfolifs) into
J=0.5,m has a dip, implying the existence of a weak order

[(x3—3x)%—12x3—3x)]

©)

U(s)= U%lm[ﬁfw“ au(s—m)?,

in the ordered phase. For large as shown in Fig. 2 with 2JH(m)
J=10, m decreases ag,, increases, and vanishes @, U(s)=— _2_UA S

leading to a single transition FM PM.
Figure 3 shows a softening of for J=2, leading to the

. - : .~ with an effective mean fieltH(m) given b
triple transitions atra=1. For smallo, , Fig. 3 shows a dip (m g y

of m aso), increases: atr,;=0, m has a nonzero value. As o2 o2+ 02, (1+m)2
oy increasesm decreases, and has a minimum vatyg,, at H(m)= —5% In| ———> 2}.
omd. As oy increases ovetryq, M increases, and has a 4oy |oatoyu(l-—m)
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Here H(m) is a monotonic increasing function af. In the  and the fluctuating interaction induces the reentrant transition
limit of oy—0, H(m) reduces tom, which is consistent as shown in Ref{4] and explained in Ref.11].
with the mean field in the conventional Ising spin model. The In the presence of ferromagnetic coupling, the system
self-consistent equatiofY) leads to shows various types of phase transitions. For small additive
noise, the system shows a single transition,-#FPM, aso,
increases. For intermediate additive noise, the system shows
double transitions, PM:FM—PM, as o increases. For
some values ofl and o,, the system shows triple transi-
producing the critical point tions, FM—PM—FM—PM, aso), increases. The interplay
of the ferromagnetic coupling, the additive noise, and the
ZSH(0)= -1 (10) fluctuating interaction leads to a softening of the order-
Op 0A2+02M parametem showing a dip asry, increases. The softening
- ] ) .. .. implies the existence of weak order in the ordered phase. We
The critical line(10) shows a circle centered at origin with 554 gbtained the renormalized mean field by the fluctuating
radius \2J in plane ofop-oy . ~ interaction in the Ising spin limit. The renormalized mean
In this paper we investigated the effect of fluctuating in-fie|d produces the critical line given by a circle centered at
teraction on the soft Ising spins within the framework of the origin with radiusy2J in the o ,-0 plane. We performed
mean-field scheme. Even in the absence of ferromagnetiqymerical simulations of a two-dimensional system with the
coupling, the fluctuating interaction induces an orderedy,cyyating interaction, confirming that the mean-field ap-

symmetry-breaking state, implying that the fluctuating inter-proach has been applied successfully. The simulation results
action produces the effective ferromagnetic coupling. Thisy| pe presented elsewhere.

noise-induced phase transition has different nature than that

shown in Ref[4]. In Ref.[4] the phase transition was in- This work was supported by the Ministry of Information
duced by a fluctuating potential in the presence of a strongnd Communications, Korea. We are grateful to Dr. E. H.
ferromagnetic coupling. The interplay of the additive noiseLee for his support on this research.

fazr
m=tanh—H(m)|,
Ta
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